
Bakefile version 0.2.11

Custom manual made by Michael Gautier 9/23/2019

Made with pandoc.

Converted from html to odt then exported to pdf from LibreOffice.

1

Hello, world

By far the simplest way to generate makefiles using Bakefile is to use so-called presets which are prepared
skeletons of bakefiles that get you started quickly. Let's see how it works on an example of the famous Hello,
world program written in C and implemented in the hello.c file:
#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

The bakefile needed to compile it,hello.bkl, looks like this:
<?xml version="1.0"?>
<makefile>

 <include file="presets/simple.bkl"/>

 <exe id="hello" template="simple">
 <sources>hello.c</sources>
 </exe>

</makefile>

Presets are included using the include directive. The structure of the file name is always the same:
presets/NAME-OF-PRESET.bkl. In general, you can combine several presets, but in practice you must be
careful when doing so. It's always a good idea to read the code for the preset before using it. The "simple" preset
we include here defines a DEBUG option and a template called simple. Generated makefiles will allow the user
to build all targets that are based on this template as either debug or release build.

Let's generate some makefiles now. The bakefile command is used to do it. For example:

$ bakefile -f msvc hello.bkl

That's all. This will creates VC++ makefile makefile.vc. Of course, you can change the name of output file if
you don't like the default:

$ bakefile -f msvc -o makefile hello.bkl

Bakefile will also generate the Makefile.in files used by Autoconf:

$ bakefile -f autoconf hello.bkl

These are templates for makefiles. Autoconf also requires a configure.ac script (previously, configure.in),
but Bakefile will not generate this for you. This script checks for platform features necessary to build the
program; see the autoconf manual for details.

When producing autoconf format output, Bakefile will also generate a file called autoconf_inc.m4 which
defines macros needed by the generated Makefile.in files. To use this, call the AC_BAKEFILE macro within your
configure.ac script.

A minimal configure.ac script for our example program would look like this:
AC_PREREQ(2.53)
AC_INIT([hello], [1.0], [author@example.com])
dnl pass some unique file file to AC_CONFIG_SRCDIR
AC_CONFIG_SRCDIR([autoconf_inc.m4])
AC_CANONICAL_HOST
DEBUG=0

2

http://www.gnu.org/software/autoconf/
bakefile.odt/ch03.html#concept.template
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch05.html#cmd.include
bakefile.odt/ch03.html#concept.preset

AC_BAKEFILE([m4_include(autoconf_inc.m4)])
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Note the part that sets the DEBUG variable. Any options declared in your bakefile must be set to some default
value before calling AC_BAKEFILE. The simple.bkl preset defines the DEBUG option, so we have to give it a
default value here.

While the above code will work, there's a better way to handle the debug option:
AC_PREREQ(2.53)
AC_INIT([hello], [1.0], [author@example.com])
dnl pass some unique file file to AC_CONFIG_SRCDIR
AC_CONFIG_SRCDIR([autoconf_inc.m4])
AC_CANONICAL_HOST

AC_ARG_ENABLE(debug,
 [--enable-debug Enable debugging information],
 USE_DEBUG="$enableval", USE_DEBUG="no")

if test $USE_DEBUG = yes ; then
 DEBUG=1
 dnl Bakefile doesn't touch {C,CPP,CXX,LD}FLAGS in autoconf format, we
 dnl have to do it ourselves. This will work with many compilers
 dnl (but not all, proper configure script would check if the compiler
 dnl supports it):
 CFLAGS="$CFLAGS -g"
else
 DEBUG=0
fi

AC_BAKEFILE([m4_include(autoconf_inc.m4)])
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

You are ready to generate Autoconf's configure script now:
$ bakefilize --copy && aclocal && autoconf

3

Table of Contents

Targets

Variables

Templates

Options

Conditions

Conditional Variables

Modules

Presets

Paths

4

bakefile.odt/ch03.html#concept.paths
bakefile.odt/ch03.html#concept.preset
bakefile.odt/ch03.html#concept.modules
bakefile.odt/ch03.html#concept.condvar
bakefile.odt/ch03.html#concept.conditions
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch03.html#concept.template
bakefile.odt/ch03.html#concept.variables
bakefile.odt/ch03.html#concept.target

Targets

Like in traditional makefiles. Target is a single buildable entity, e.g. executable, library or DLL. See Chapter 4,
Targets for details.

Variables

You can set and use variables in Bakefile in a way very similar to other make programs. Variables may be either
global or local to the target they are bound to. Note that variables are expanded by Bakefile and do not appear as
variables in generated native makefiles (compare with options).

Variables are expanded by typing $(var) (for some variable var) in makefile text. Same syntax is used to
expand options and conditional variables, too.

Templates

It is often the case that several targets in the makefile share the same properties: for example, they are installed
into same directory, use same compiler settings or include headers from same directories. Templates are a
mechanism designed to eliminate such duplication from makefiles. In Bakefile, you simply declare that a target
derives from template (or templates) and it will inherit all its properties. See description of template command.

Options

It is desirable that generated makefiles are configurable to some degree (especially with the autoconf backend).
Bakefile makes it possible to declare so-called options using option command. Each format backend has its own
way of presenting options and some formats may fail to support them at all. Some formats (such as Visual C++
project files backend) have only limited support of options. Typically, options are translated into variables in
native makefiles and can be modified by the user.

This is how setting an option may look with autoconf:

$./configure --enable-debug

Or with VC++ makefiles:

C:\> nmake DEBUG=1

Conditions

Condition is a boolean expression that is used to conditionally determine values of variables and also to
conditionally disable or enable parts of the makefile. Conditions are commonly used to differ generated native
makefiles based on output format and user settings of options.

There are two types of conditions:

Weak

The condition may be any Python expression that only uses variables defined with the set command and
Python helper functions from available modules. The expression must evaluate to either 0 (false) or 1
(true).
If it evaluates to 0, then the statement that has the condition associated with it is not processed. If it
evalues to 1, that the statement is processed as if it had no condition.

Strong

5

bakefile.odt/ch05.html#cmd.set
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch05.html#cmd.option
bakefile.odt/ch05.html#cmd.template
bakefile.odt/ch03.html#concept.condvar
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch04.html
bakefile.odt/ch04.html

These conditions depend on the value of an option. Their syntax is very limited compared to weak
conditions, because the decisition (condition evaluation) is postponed until make-time -- i.e. generated
native makefile contains the condition in some form.
The condition may only take the form of simple test for equality:
OPTION=="VALUE"

Here, OPTION is the name of an already defined option with enumerated possible values and VALUE is
one of the option's values.
If a strong conditions is used with the set command, a conditional variable is created.

Examples of valid conditions:
<set var="NUM1">1</set>
<set var="NUM2">10</set>
<set var="RESULT_11" cond="NUM1+NUM2==11">yes</set>

<option name="BUILD">
 <values>debug,release</values>
 <default-value>release</default-value>
</option>

<set var="USE_DEBUG" cond="BUILD=='debug'">1</set>
<set var="USE_DEBUG" cond="BUILD=='release'">0</set>

Examples of invalid conditions:
<option name="NUM1">
 <default-value>1</default-value>
</option>
</set>
<set var="NUM2">10</set>
<set var="RESULT_11" cond="NUM1+NUM2==1">yes</set>

<option name="BUILD">
 <values>R D</values>
</option>

<set var="USE_DEBUG" cond="BUILD=='debug'">1</set>
 <!-- not in the list of values -->

<option name="BUILD2"></option>

<set var="USE_DEBUG2" cond="BUILD2=='debug'">1</set>
 <!-- not option with enumeration -->

<option name="BUILD3">
 <values>release debug</values>
</option>

<set var="USE_DEBUG3" cond="BUILD!='debug'">1</set>
 <!-- not equality test -->

See also: the section called “Conditional Variables”, set

Conditional Variables

Conditional variables are variables whose value differs depending on a condition. They are created by using the
conditional form of set command. Unlike options, they can't be directly modified by user of native makefile.
Unlike variables, they are not evaluated by Bakefile during processing (the value depends on values of options).

Summary of differences between options, variables and conditional variables:

Type Value Set by user
variable constant no

6

bakefile.odt/ch05.html#cmd.set
bakefile.odt/ch05.html#cmd.set
bakefile.odt/ch03.html#concept.condvar
bakefile.odt/ch03.html#concept.condvar
bakefile.odt/ch05.html#cmd.set
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch03.html#concept.option

Type Value Set by user
option variable yes
conditional variable variable (derived from some option) no

Modules

Modules extend Bakefile with additional abilities. For example, standard configuration of Bakefile can't build
Python modules. You must explicitly load python module which will add, among other things, python-module
rule. Functionality is divided into modules so that generated makefiles are not cluttered with unused options and
to avoid unnecessary configure checks.

Presets

Presets are pieces of Bakefile code that can be included in user bakefiles. Their purpose is to provide support for
e.g. libraries or tools or to provide commonly used code snippets in convenient form.

For example, Bakefile contains the simple preset that can be used to quickly create makefiles with support for
both debug and release builds.

Paths

Regardless of the operating system where Bakefile is running, the convention respected by all Bakefile tags and
variables is to use Unix-style paths, i.e. to use forward slash (/) as the path separator.

7

Table of Contents

Standard Target Types ("Rules")

exe

lib

dll

module

phony

action

subproject

Common tags

8

bakefile.odt/ch04.html#sec.commontags
bakefile.odt/ch04.html#rule.subproject
bakefile.odt/ch04.html#rule.action
bakefile.odt/ch04.html#rule.phony
bakefile.odt/ch04.html#rule.module
bakefile.odt/ch04.html#rule.dll
bakefile.odt/ch04.html#rule.lib
bakefile.odt/ch04.html#rule.exe
bakefile.odt/ch04.html#rules

Bakefile targets correspond to native makefile targets: they are compiled programs, libraries, or more complex
actions such as "install" or "dist". Target syntax is similar to command syntax:
<TYPE id="NAME" [template="TEMPLATE,..."] [template_append="TEMPLATE,..."]
 [cond="CONDITION"] [category="CATEGORY"]>
 SPECIFICATION
</TYPE>

There are six standard target types: exe, dll, module, lib, phony and action. You can define a new "rule" (that is,
a target type) based on one of the standard rules using the define-rule command.

Each target requires a unique id. This ID is usually present in the generated makefile, so you can type make
myprogram to create the target with the ID myprogram. The target's ID also controls the name of the output file.

template is an optional comma-separated list of IDs of templates that the target is derived from.
template_append is an optional comma-separated list of templates that are appended to the target
specification. (template inserts the template before the specification).

If the cond attribute is given, the target is only compiled if the named condition was met. (Follow that link to
see the rules governing whether Bakefile evaluates the condition, or the native build system (e.g. make)
evaluates it).

In addition to the ID, every target can have variables attached to it. These variables are only effective for the
target; contrast global variables, which affect all targets. They can be used to override a global variable: for
example, the DLLEXT variable is .dll for Windows makefiles, but you can override the variable locally for the
sharpen_plugin target to be .plugin.

Target is described using SPECIFICATION, which is a list of set commands and tags. Tags are rule-specific
constructs, so they come in several forms: they can list source files for an executable, set include directories, or
define compiler flags. Unlike set, they don't set any specific variable, but rather set various variables in a
generator-specific way. Tag syntax is almost identical to the set function, but without a variable name:
<TAGNAME>VALUE</TAGNAME>

Common tags are described in the section below. Tags specific to particular modules are described in
Chapter 10, Modules . A small example of using tags:
<exe id="myprogram">
 <!-- set target-specific variable: -->
 <set var="SOME_VAR">value</set>
 <!-- three tags: -->
 <sources>file1.c myprogram.c utils.c</sources>
 <include>./includes</include>
 <define>USE_UNICODE</define>
</exe>

Unless the documentation says otherwise, you can use the same tag repeatedly with the same target.

The optional category attribute can be given to classify the target. Possible classifications are all (reserved for
the all target of makefiles and cannot be used in user Bakefiles), normal for targets declared in Bakefiles, and
automatic for targets that are created as a side-effect of Bakefile's processing (e.g. object file targets). The
targets are sorted in the generated makefile according to the category: the all target is first, followed by normal
targets, and then automatic targets.

Pseudo targets

Some rules don't declare real targets but so-called pseudo targets. Pseudo targets are processed as standard
targets, but they don't appear in the generated makefile, have no action associated with them, can't depend on
any other target, and can't be a dependency of another target. They can only modify the behavior of other
targets. An example of a pseudo target is data-files.

9

bakefile.odt/ch10.html#rule.datafiles.data-files
bakefile.odt/ch10.html
bakefile.odt/ch04.html#rules
bakefile.odt/ch05.html#cmd.set
bakefile.odt/ch03.html#concept.variables
bakefile.odt/ch03.html#concept.conditions
bakefile.odt/ch05.html#cmd.template
bakefile.odt/ch05.html#cmd.define-rule
bakefile.odt/ch04.html#rule.action
bakefile.odt/ch04.html#rule.phony
bakefile.odt/ch04.html#rule.lib
bakefile.odt/ch04.html#rule.module
bakefile.odt/ch04.html#rule.dll
bakefile.odt/ch04.html#rule.exe
bakefile.odt/ch05.html

The advantage of pseudo targets is that the id attribute is not required. The disadvantage is that they can't be
conditional.

Standard Target Types ("Rules")

Description of builtin rules and their tags follows. Additional rules and tags are defined by modules, see
Chapter 10, Modules .

exe

Builds a program.
Tag Description
app-type Use this tag to specify whether the executable is

console application (console) or windowed one (gui).
These two kinds of applications are linked differently
on Windows.
<exe id="foo">
 <app-type>gui</app-type>
 <sources>foo.c bar.c</sources>
</exe>

exename Set name of the executable. By default, the name is
same as id, but it is sometimes useful to use different
name to identify the executable in makefiles (id) and
for created program file (exename). Physical filename
is deriver from exename and format-specific extension
(e.g. .exe on Windows).

stack Set the size of the stack on platforms where it is
possible. The default stack size varies for different
platforms and compilers. With too small stack you may
get an error indicating stack has overflowed.
(Currently used by Watcom format only.)

lib

Tag Description
libname Set name of the library. By default, the name is same

as id, but it is sometimes useful to use different name
to identify the library in makefiles (id) and for created
library file (libname). This tag does not set physical
filename -- that is derived from libname and other
generator-specific variables.
<lib id="foo">

<libname>foo$(COMPILER)_$(DBGFLAG)</libname>
 <sources>foo.c bar.c</sources>
</lib>

dll

Tag Description
dllname Similar to libname tag on dll, but it affects the name of

shared library/DLL.
libname Similar to dllname, but used for import library on

10

bakefile.odt/ch04.html#tags.dll.dllname
bakefile.odt/ch04.html#tags.lib.libname
bakefile.odt/ch09.html#format.watcom
bakefile.odt/ch10.html

Tag Description
Windows and .so symlink on Unix.

version Portable platform-independent shared library version.
Not yet implemented.

so_version The value consists of three numbers separated by dots.
Library name plus the first component of the version
together form soname (e.g. libfoo.so.1 on Linux)
which is used for runtime resolution of dependencies.
Libraries with different sonames are binary
incompatible and cannot be used interchangeable. On
the other hand, the remaining two components contain
information about minor versions that don't change
backward compatibility and aren't used by runtime
linker.
Note that this version number is strictly for runtime
linker's use and for maintaining binary compatiblity, it
should not be version number of your library.
This tag is only implemented in the autoconf format.

mac_version This tag is used to specify shared library version for
runtime linker on Darwin platforms. Similarly to
so_version, it expects three numbers separated by dots,
but their interpretation is different. The value is passed
as-is to compilers -current_version argument and
the first two components are passed to --
compatibility_version. See See Apple's ld
documentation for details.
This tag is only implemented in the autoconf and
xcode2 formats.

module

Builds loadable module (aka plugin). Unlike dll, this one does not create import library on Windows.
Tag Description
dllname See dllname.

phony

This type of target does nothing. It is usually used as convenience target together with depends tag to easily
build set of targets. Standard target all is an example of phony target.

action

This is most generic rule. It allows you to execute arbitrary sequence of commands when building the target and
can therefore be used to extend Bakefile with custom build rules. Note that this rule is not platform- and
compiler-independent as the rest of rules.
Tag Description
command Adds command to list of commands to be executed

when building the target.
<action id="manual.html">
 <command>docbook2html manual.xml
manual.html</command>
</action>

11

bakefile.odt/ch04.html#tag.depends
bakefile.odt/ch04.html#tags.dll.dllname
bakefile.odt/ch04.html#rule.dll
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/ld.1.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/ld.1.html
bakefile.odt/ch04.html#tags.dll.so_version

Tag Description
is-phony Marks the target as phony. A phony target is target

whose name is not really the name of file produced by
it, as is the case with "standard" targets. Instead, it's
just a symbolic name for some commands to be
executed. In other words, this target should not be
considered by make when creating the file dependency
graph. For an example of why this is useful, consider a
tags target that runs the Unix ctags program. That
program creates a file called tags, so after saying
make tags once, make will
always say that the tags target is up to date. By
marking the target as phony, you disable the file
dependency checking for it, so make
tags always runs the ctags program.

subproject

Declares a subproject. This is typically another makefile in a subdirectory and is independent of its parent
project. Therefore you can't use any variables or refer to targets from the parent project in a subproject.
Tag Description
dir Directory containing subproject. Parent makefile calls

makefile in this directory.
target Optional argument which specifies what target to build

in the subproject.
installable Whether make install (if supported by the format)

should descend into subproject's directory. The value
can only be yes or no and must be a constant
expression.

Here is an example of how to use the subproject target:
<subproject id="examples">
 <dir>examples</dir>
 <installable>no</installable>
</subproject>

Common tags

These are tags you can use with any of the above target types. These tags are always available: it is not
neccessary to load any module to use them.
Tag Description Availability
depends This tag is used to express target's

dependency on other targets. All
targets in the depends tag must be
built prior to building this target.
The value is whitespace-separated
list of target IDs. It is an error to
specify a nonexistent target here.
Note that the library tag implies
depends.
<exe id="app">
<sources>app.c</sources>
<depends>setup</depends>

all rules

12

bakefile.odt/ch04.html#tag.library
bakefile.odt/ch10.html

Tag Description Availability
</exe>

dependency-of Mark the target as dependency of
target specified in tag's value. The
value must be ID of existing target.
This tag is opposite of depends.
Following two examples have
identical effect:
<exe id="setup"></exe>
<exe id="app">
<depends>setup</depends>
</exe>
<exe id="app"></exe>
<exe id="setup">
<dependency-of>app</
dependency-of>
</exe>

Note that only one of these tags
should be used, it is not necessary to
specify both of them.

all

headers Specify (C/C++) header files used
by the target.
<exe id="app">
 <headers>app.h</headers>
 <headers>utils.h
additionalheader.h</headers>
 <sources>app.c</sources>
</exe>

exe, dll, module, lib

depends-on-file Mark the target as depending on a
given file. Use this when the
dependency isn't one of the other
declared targets. This can be useful
for example when the dependency is
generated by a script:
<action id="generated-
header.h">

<command>./header-
generator.pl</command>

<depends-on-file>header-
generator.pl</depends-on-file>
</action>

In this example, the header-
generator.pl script creates
generated-header.h. You would want
the script to be re-run any time it
changes, since the change probably
would make it generate different
contents for that header file. But
since generated-header.pl is not
itself generated by the makefile, you
cannot use the depends tag here.

all

objects-depend Same as depends, except the
dependency is added to all object
files used to build the target instead

exe, dll, module, lib

13

bakefile.odt/ch04.html#tag.depends
bakefile.odt/ch04.html#tag.depends
bakefile.odt/ch04.html#tag.depends

Tag Description Availability
of to the target itself. This is useful
e.g. in combination with
precompiled headers (which must
be generated before any source file
is compiled) or when a commonly
used header file is generated by the
makefile.

dirname Set name of directory where the
target will be created. BUILDDIR is
used by default.

exe, dll, module, lib

sources Specify source files used to build
the target.
<exe id="app">
 <sources>app.c</sources>
 <sources>utils.c
utils2.c</sources>
</exe>

exe, dll, module, lib

include Add directory where the compiler
should look for headers. This
corresponds to the -I switch used
by many compilers. Calls res-
include with the same value.
Example:
<exe id="hello">
 <sources>hello.c</sources>

<include>../include/foo</inclu
de>
</exe>

exe, dll, module, lib

define Define C preprocessor macro. The
value may be empty, in which case
no flag is added. Calls res-define
with same value.

exe, dll, module, lib

sys-lib Link against specified library
installed in the system. Note that
this is not meant for linking in
libraries that were built by the same
makefile; use library for that. This
command links against a library
installed in the system or provided
by the compiler and corresponds to
the -l switch of Unix compilers.
<exe id="png2bmp">
 <sources>png2bmp.c</sources>
 <sys-lib>png</sys-lib>
 <sys-lib>z</sys-lib>
</exe>

The library name may be empty.
Only one library may be given as
the tag's argument; the following
usage is incorrect:
<exe id="png2bmp">

exe, dll, module

14

bakefile.odt/ch04.html#tag.library
bakefile.odt/ch04.html#tag.res-define
bakefile.odt/ch04.html#tag.res-include
bakefile.odt/ch04.html#tag.res-include

Tag Description Availability
 <sources>png2bmp.c</sources>
 <sys-lib>png z</sys-lib>
<!-- INCORRECT -->
</exe>

Note that the name of the library in
this tag is not a file name and must
not include paths. Use lib-path to
add a directory to the library search
path.

lib-path Add a directory to the search path
used by the compiler to find system
libraries. This corresponds to the -L
switch of Unix compilers. Example:
<exe id="hello">
 <sources>hello.c</sources>
 <!-- note that hardcoding
library paths like this is a
bad
 idea, it's done here
only for the sake of
simplicity;
 in real bakefile, an
<option> would be used -->

<lib-path>/usr/lib/mysql</lib-
path>
 <sys-lib>mysqlclient</sys-
lib>
</exe>

On a typical Unix system, this asks
the linker to link the hello program
against libmysqlclient.so and to
search for it in the directory
/usr/lib/mysql in addition to any
other directories the linker is
configured to use.

exe, dll, module

library Link against library compiled by
this makefile. The value passed to
this tag must be name of existing
target. Compare sys-lib.
<lib id="mylib">
 <sources>lib1.c
lib2.c</sources>
</lib>
<exe id="myapp">
 <sources>main.c</sources>
 <library>mylib</library>
 <sys-lib>X11</sys-lib>
 <sys-lib>GL</sys-lib>
</exe>

exe, dll, module

optimize Set compiler's optimization level.
May be one of off (no
optimization), speed (generate
fastest code) or size (smallest

exe, dll, module, lib

15

bakefile.odt/ch04.html#tag.sys-lib
bakefile.odt/ch04.html#tag.sys-lib
bakefile.odt/ch04.html#tag.sys-lib
bakefile.odt/ch04.html#tag.lib-path

Tag Description Availability
code).
<set var="OPTIMIZE_FLAG">
 <if
cond="BUILD=='release'">speed<
/if>
 <if
cond="BUILD=='debug'">off</if>
</set>
<exe id="myapp">
 <optimize>$(OPTIMIZE_FLAG)</
optimize>
 <sources>main.c</sources>
 <sys-lib>GL</sys-lib>
</exe>

debug-info Enable or disable debugging
information. Can be either on or
off.

exe, dll, module, lib

debug-runtime-libs Enable or disable linking against
debug version of C runtime. Can be
either on or off and must appear
after debug-info. If not specified,
then debug runtime libraries are
used if and only if debug-info was
set to on. Note that this tag has
effect only with Visual C++; other
compilers respect only debug-info.

exe, dll, module, lib

debug-info-edit-and-continue Enable or disable additional
debugging information to support
Edit and Continue feature of Visual
C++ compilers. Can be either on or
off (default). Only supported by
Visual C++ project files, does
nothing in other formats.

exe, dll, module, lib

arch Set target CPU architecture. Note
that this is not portable and should
be avoided if possible. Accepted
values are i[3456]86.

exe, dll, module, lib

pic Tells the compiler whether to
generate position-independent code
or not. The default is to use PIC for
DLLs and not use it for executables
and static libraries, but you may
want to change it if your static
library may be linked into a DLL.
Accepted values are on and off.

exe, lib

threading Use multi to enable and single to
disable multithreading in the
application. This affects what
libraries are linked into executable
on some platforms.

exe, dll, module, lib

warnings Sets warnings level for C/C++ exe, dll, module, lib

16

http://msdn.microsoft.com/en-us/library/bcew296c(VS.80).aspx
bakefile.odt/ch04.html#tag.debug-info
bakefile.odt/ch04.html#tag.debug-info
bakefile.odt/ch04.html#tag.debug-info

Tag Description Availability
compiler. Possible values are no,
default and max.

precomp-headers Can be on or off, enables or
disables use of precompiled headers
with compilers that support them.

exe, dll, module, lib

precomp-headers-file Use this tag to fine-tune where
precompiled headers are stored. The
compiler must support this and the
value passed to precomp-headers-
file can be modified by Bakefile,
e.g. by apending .pch extension to
it.

exe, dll, module, lib

precomp-headers-gen For compilers that support it,
specify which source file should be
used to generate precompiled
headers.
<exe id="myapp">
 <sources>foo.cpp
bar.cpp</sources>

<precomp-headers>on</precomp-
headers>
 <precomp-headers-
gen>foo.cpp</precomp-headers-
gen>
 <precomp-headers-
header>mypch.h</precomp-
headers-header>
</exe>

exe, dll, module, lib

precomp-headers-header For compilers that support it,
specify which header file should be
used as the precompiled header.
Typically, this header must be the
first header included and it must be
included by all source files. Some
compilers (GCC in particular)
ignore this, because they use
different PCH model.
<exe id="myapp">
 <sources>foo.cpp
bar.cpp</sources>

<precomp-headers>on</precomp-
headers>
 <precomp-headers-
gen>foo.cpp</precomp-headers-
gen>
 <precomp-headers-
header>mypch.h</precomp-
headers-header>
</exe>

exe, dll, module, lib

cxx-rtti Enable or disable RTTI when
compiling C++ sources. Can be

exe, dll, module, lib

17

Tag Description Availability
either on or off.

cxx-exceptions Enable or disable C++ exceptions
handling. Can be either on or off.

exe, dll, module, lib

cflags
cxxflags
cppflags

Add compiler dependent
compilation flags to compiler flags.

exe, dll, module, lib

ldflags Add linker dependent flags for the
linker.

exe, dll, module, lib

ldlibs Same as ldflags, but adds the flags
after all flags specified using
ldflags. This is useful when
resolving command line order
problems that gcc is prone to.

exe, dll, module

win32-res Sets win32 resource (.rc) file for
executable or DLL. The tag does
nothing on platforms other than
Windows. Compilation of the
resource respects define and include
tags on the target, as well as their
resource specific counterparts res-
define and res-include.

exe, dll, module

mac-res Sets Mac resource (.r) file for
executable or DLL. The tag does
nothing on platforms other than
Mac. Compilation of the resource
respects define and include tags on
the target, as well as their resource
specific counterparts res-define and
res-include.

exe, dll, module

symbian-res Sets Symbian resource file for
executable or DLL. The tag does
nothing on platforms other than
Symbian. Compilation of the
resource respects define and include
tags on the target, as well as their
resource specific counterparts res-
define and res-include.

exe, dll, module

res-include Similar to include, but applies only
to resources (mac-res, win32-res)
and not to C/C++ sources.

exe, dll, module

res-define Similar to define, but applies only to
resources (mac-res, win32-res) and
not to C/C++ sources.

exe, dll, module

clean-files Adds files to list of files that are
cleaned when make clean is run --
i.e. files created while building the
target.

all

install-to If used, then the target is installed
into directory specified as tag's

exe, dll, module, lib

18

bakefile.odt/ch04.html#tag.win32-res
bakefile.odt/ch04.html#tag.mac-res
bakefile.odt/ch04.html#tag.define
bakefile.odt/ch04.html#tag.win32-res
bakefile.odt/ch04.html#tag.mac-res
bakefile.odt/ch04.html#tag.include
bakefile.odt/ch04.html#tag.res-include
bakefile.odt/ch04.html#tag.res-define
bakefile.odt/ch04.html#tag.res-define
bakefile.odt/ch04.html#tag.include
bakefile.odt/ch04.html#tag.define
bakefile.odt/ch04.html#tag.res-include
bakefile.odt/ch04.html#tag.res-define
bakefile.odt/ch04.html#tag.include
bakefile.odt/ch04.html#tag.define
bakefile.odt/ch04.html#tag.res-include
bakefile.odt/ch04.html#tag.res-define
bakefile.odt/ch04.html#tag.res-define
bakefile.odt/ch04.html#tag.include
bakefile.odt/ch04.html#tag.define
bakefile.odt/ch04.html#tag.ldflags

Tag Description Availability
value by make install (and
uninstalled from there by the make
uninstall target).

install-headers-to If used, then the headers (see
headers tag) of the target are
installed into the directory specified
as tag's value by make install (and
uninstalled from there by the make
uninstall target).

exe, dll, module, lib

install-if Install (see install-to the target
conditionally. The value must be
well-formed condition.
<option name="INSTALL_HELLO">
 <values>0,1</values>
 <default-value>1</default-
value>
</option>
<exe id="hello">
 <sources>hello.c</sources>

<install-to>$(BINDIR)</install
-to>
 <install-
if>INSTALL_HELLO=='1'</install
-if>
</exe>

exe, dll, module, lib

postlink-command Use this tag to specify command(s)
that must be executed after the
target is linked. This can be used to
e.g. add resources or strip
debugging information.

exe, dll, module, lib

uid Defines target's unique ID number
for formats that need it. FIXME:
currently not implemented in any
format; document use of
type=symbian1 etc. once it is used
by something

exe, dll, module

msvc-guid (Visual C++ project formats only.)
Sets project's GUID.

exe, lib, dll, module

Autoconf Note

Many configuration options listed above are not supported by the Autoconf format (e.g. optimize, debug-info or
arch. This is because configure is used to find appropriate compiler flags.

19

bakefile.odt/ch04.html#tag.arch
bakefile.odt/ch04.html#tag.debug-info
bakefile.odt/ch04.html#tag.optimize
bakefile.odt/ch04.html#tag.install-to
bakefile.odt/ch04.html#tag.headers

Table of Contents

Makefile Commands

set

unset

option

template

using

include

if

fragment

requires

error

warning

echo

Commands for Extending Bakefile

define-rule

define-tag

define-global-tag

add-target

modify-target

output

20

bakefile.odt/ch05.html#cmd.output
bakefile.odt/ch05.html#cmd.modify-target
bakefile.odt/ch05.html#cmd.add-target
bakefile.odt/ch05.html#cmd.define-global-tag
bakefile.odt/ch05.html#cmd.define-tag
bakefile.odt/ch05.html#cmd.define-rule
bakefile.odt/ch05.html#sec.extending.bkl
bakefile.odt/ch05.html#cmd.echo
bakefile.odt/ch05.html#cmd.warning
bakefile.odt/ch05.html#cmd.error
bakefile.odt/ch05.html#cmd.requires
bakefile.odt/ch05.html#cmd.fragment
bakefile.odt/ch05.html#cmd.if
bakefile.odt/ch05.html#cmd.include
bakefile.odt/ch05.html#cmd.using
bakefile.odt/ch05.html#cmd.template
bakefile.odt/ch05.html#cmd.option
bakefile.odt/ch05.html#cmd.unset
bakefile.odt/ch05.html#cmd.set
bakefile.odt/ch05.html#sec.makefile.cmds

Commands are top-level makefile constructs. They have following form:
<COMMAND [PROPERTY="VALUE", ...]>
 CONTENT
</COMMAND>

Here, CONTENT is either a text value (as in e.g. set) or XML subtree.

Makefile Commands

set

Sets a variable. There are two forms of the command. The first one is for setting variables unconditionally:
<set var="NAME" [append="APP"] [prepend="PREP"] [overwrite="OVERWRITE"]
 [scope="SCOPE"] [make_var="MAKEVAR"] [hints="HINTS"]>
 VALUE
</set>

The other one resembles switch statement known from C and is used to set the variable to one of possible values
depending on certain condition:
<set var="NAME" [append="APP"] [prepend="PREP"] [overwrite="OVERWRITE"]
 [scope="SCOPE"] [make_var="MAKEVAR"] [hints="HINTS"]>
 <if cond="COND">VALUE</if>
 [
 <if cond="COND">VALUE</if>
 ...
]
</set>

If the second from is used then the variable is set to value from the first if node whose condition is met, or to
empty string if no condition is met. Note that conditions within one set command must be mutually exclusive.

The value is any text that may contain variable expansions.

If an option with same name exists, the variable takes precedence and the option is shadowed by it. This
behaviour allows you to hardcode values for some ruleset's options in the makefile or to specify the value on
command line when running Bakefile.

Parameters:

var

Name of the variable to assign the value. Any constant expression is allowed for this attribute, not only
literals.
<set var="postfix">world</set>
<set var="prefix">hello</set>

<!-- the following <set> tag will create a "hello_world" variable: -->
<set var="$(prefix)_$(postfix)">Hello world</set>
<echo>$(hello_world)</echo>

Required parameter

append

If 1, the value is appended to previous value of the variable if it is already defined, with a space inserted
between them. If the variable wasn't defined yet, the command behaves as if append=0. Following two
set commands are equivalent:

21

bakefile.odt/ch03.html#concept.option
bakefile.odt/ch03.html#concept.variables
bakefile.odt/ch05.html#cmd.set

<set var="FOO" append="1">something</set>
<set var="FOO">$(FOO) something</set>

Default value: 0

prepend

If 1, the value is prepended in front of previous value of the variable if it is already defined (otherwise
the command behaves as if prepend=0). Following two set commands are equivalent:
<set var="FOO" prepend="1">something</set>
<set var="FOO">something $(FOO)</set>

Default value: 0

cond

If present, the variable is set only if the condition is met. If the condition evaluates to 0, the variable is
not set, if it evaluates to 1, the variable is set. If condition's value can't be determined at the time of
makefile processing, a conditional variable is created instead of ordinary variable. See the section called
“Conditions” for more details.
<set var="FILES">
 <if cond="BUILD=='debug'">foo_dbg.c</if>
 <if cond="BUILD=='release'">foo.c</if>
</set>

The condition can also value special value target, which can only be used within target specification.
In that case parent target's condition is used (or 1 if there's no condition set on the target). The condition
can also be "target andcondexpr" in which case target's condition
(if any) is combined with condexpr.
The string with condition may itself be a constant expression, so you can write this:
<set var="IsRelease">=='release'</set>
<set var="CondDebug">BUILD=='debug'</set>
<set var="FILES">
 <if cond="BUILD$(IsRelease)">foo_dbg.c</if>
 <if cond="$(CondDebug)">foo.c</if>
</set>

overwrite

If set to 0 and variable with this name already exists, then it's value is not changed (the default is to
change it).
Default value: 1

scope

Specify scope of variable being set. Possible values are local (current target if the command is applied
on a target, same as global otherwise), global or a name of existing target (in which case the variable
is set on that target).
Can't be used with conditional variables.
Default value: local

make_var

If set to 1, then the variable is preserved in the makefile instead of being substituted by Bakefile. This
happens only if the output format supports it (FORMAT_HAS_VARIABLES is set to 1) and if variable's
value is not empty string. This settings is useful together with frequently used variables with long
values, it helps reduce size of generated makefiles.
Default value: 0

hints

Comma-separated list of hint keywords. These hints are optional and Bakefile can (but doesn't have to)
use them to better format generated makefiles. So far only files hint is supported. It tells Bakefile that

22

bakefile.odt/ch07.html#var.FORMAT_HAS_VARIABLES
bakefile.odt/ch04.html#targets
bakefile.odt/ch03.html#concept.target
bakefile.odt/ch03.html#concept.conditions
bakefile.odt/ch03.html#concept.conditions
bakefile.odt/ch03.html#concept.condvar

the variable holds list of files and if it is either make or conditional variable, it is formatted in such way
that only one file per line is written to the output (and therefore adding or removing files does only cause
small differences).

Example:
<set var="APP_VERSION">1.0.3</set>
<set var="TAR_NAME">app-$(APP_VERSION).tar.gz</set>

See also: unset

unset

Unsets variable previously set by set. Note that you can only unset a variable, not an option or conditional
variable.
<unset var="NAME"/>

Parameters:

var

The meaning is same as in set's properties.

option

Adds an option to the makefile.
<option name="NAME" [never_empty="NEVER_EMPTY"] [category="CATEGORY"]>
 [<default-value [force="FORCE"]>DEFVALUE</default-value>]
 [<description>DESC</description>]
 [<values>VALUES</values>]
 [<values-description>VALUES_DESC</values-description>]
</option>

NAME is variable name under which the option is used in the makefile (using same syntax as when expanding
variables). NAME is required, the rest of parameters is optional.

DEFVALUE is default value of the option, if appliable. It can be used by format backends that don't support
options and it is used as default in those that do. Use it whenever possible. Note that for options with listed
values (see the VALUES parameter), the default value must be one of the values listed unless FORCE is set to 1.

FORCE can be 0 (the default) or 1 to indicate that Bakefile should not check that the default value is in the list of
allowed values. This is useful when you want to use e.g. a shell command as the default value ($(shell some-
command)) or an environment variable $(MYENVVAR). It is your responsibility to ensure that the default value is
a legal value if you use force=1.

NEVER_EMPTY may be set to 1 to tell Bakefile that it can treat the option as non-empty variable. This is useful
only rarely in situations when Bakefile requires some non-empty value as tag's argument.

CATEGORY may be set to provide Bakefile additional information about the option. Certain operations (typically
substitutions) may fail when applied to options unless all of its possible values are known. Because many tags
use substitutions internally, this can be very limiting; the category hint can be used to work around most
common problems. Possible values are unspecified (the default) and path, which indicates that the option
will contain valid native, non-empty path name. An option with category set to path can be used as argument to
tags like include.

DESC is human-readable description of the option, for use in comments.

VALUES is comma-separated list of all possible values the option can have. It is used by backends that don't

23

bakefile.odt/ch04.html#tag.include
bakefile.odt/ch03.html#concept.variables
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch05.html#cmd.set.params
bakefile.odt/ch03.html#concept.condvar
bakefile.odt/ch03.html#concept.condvar
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch05.html#cmd.set
bakefile.odt/ch05.html#cmd.unset

support options (such as Visual C++ project files) to generate all possible configurations. It's use is highly
recommended.

VALUES_DESC is comma-separated list of single-word description of corresponding values. It may be used only
if VALUES were specified and both lists must have same length. These descriptions will show up in formats that
don't support conditions, such as Visual C++ projects (the project will contain several configurations that will be
described using these words).

template

Defines new template.
<template id="NAME" [template="TEMPLATE,..."]>
 SPECIFICATION
</template>

Template definition is syntactically identical to target definition. template is optional comma-separated list of
templates this template derives from and SPECIFICATION may contain the very same things that target node.

Content of template node is not processed by Bakefile when it is encountered in makefile. It is stored in
templates dictionary instead. When a target that derives from the template is encountered, the template is
inserted before target's content.

For example consider this makefile fragment:
<template id="t1">
 <define>NAME=$(id)</define>
</template>
<template id="t2">
 <include>../headers</include>
</template>

<exe id="app" template="t1,t2">
 <sources>hello.c</sources>
</exe>

It looks like this after templates expansion:
<exe id="app" template="t1,t2">
 <define>NAME=$(id)</define>
 <include>../headers</include>
 <sources>hello.c</sources>
</exe>

using

This commands is used to declare what modules the makefile requires. See more about modules in the section
called “Modules”.
<using module="MODULE1[,MODULE2[,...]]"/>

The effect of using is as follows: the modules are added to the list of used modules (unless they are already in
it) and additional ruleset files are loaded from Bakefile search paths. Name of every file in every search path is
decomposed into components by making every subdirectory name a component and splitting the basename into
components by separating it on hyphens. A file is included as soon as all components of its name appear in the
list of used modules. The inclusion behaves indentically to include.

Consider this structure of ruleset files:
python/common.bakefile # python,common
python/cxx.bakefile # python,cxx
cxx-common.bakefile # cxx,common

24

bakefile.odt/ch05.html#cmd.include
bakefile.odt/rn01re01.html#searchpaths
bakefile.odt/ch03.html#concept.modules
bakefile.odt/ch03.html#concept.modules
bakefile.odt/ch04.html#targets
bakefile.odt/ch03.html#concept.template

cxx-qt.bakefile # cxx,qt
qt/python.bakefile # qt,python
qt/cxx-python.bakefile # qt,cxx,python

Anotated makefile fragment illustrates order of modules loading:
<using module="python"/>
<!-- python/common.bakefile loaded -->

<using module="cxx"/>
<!-- cxx-common.bakefile loaded -->
<!-- python/cxx.bakefile loaded -->

<using module="qt"/>
<!-- qt/python.bakefile loaded -->
<!-- cxx-qt.bakefile loaded -->
<!-- qt/cxx-python.bakefile loaded -->

(Note that module "common" and module named after the target format are always used. Therefore ruleset files
common/MODULE.bakefile are always loaded if they exist.)

The command may be used repeatedly in the makefile or included files. Repeating the using command with
module that was already added to the list of used modules with using has no effect.

Parameters:

module

Comma-separated list of modules to use.
In this example the makefile uses Gettext, Python and Pascal modules:
<using module="gettext,python"/>
<using module="pascal"/>

include

Includes Bakefile file. This is done by loading the file and processing it immediately after include command is
encountered during parsing. The effect of using include is identical to including content of the file in place of
the include command.
<include file="FILENAME" [ignore_missing="0|1"] [once="0|1"]/>

Parameters:

file

Name of the file to include. The filename may be either absolute or relative. In the latter case, it is
looked up relative to the location of the makefile that contains the include command and if that fails,
relative to standard Bakefile search paths.

ignore_missing

If set to 1, it is not an error if the file can't be found. If 0, Bakefile will abort with an error if it can't find
the file.
Default value: 0

once

If set to 1, then the file won't be included if it was already included previously.
Default value: 0

if

Conditionally process part of the makefile.
<if cond="WEAKCONDITION">
 ...statements...

25

</if>

The condition must be weak. If it evaluates to 1 nodes under if node are processed as if they were toplevel
nodes. If it evaluates to 0, they are discarded.

fragment

Inserts text into generated native makefile verbatim, so that it is possible to include things not yet supported by
Bakefile in the makefiles. The text can be either read from a file or is taken from command node's content.
Variables are not substituted in fragment's content, it is copied to the makefile as-is, with no changes.
Parameter Description Required/Default value
format Output format the fragment is for. required
file Read the fragment from file. no file, text is embedded

requires

Declares bakefile's requirements that the installed bakefile version must meet to be able to correctly generate
native makefiles from it.
Parameter Description Required/Default value
version Minimal required version of

Bakefile, e.g. 0.1.1.
optional

Example:
<!-- refuse to run with Bakefile < 0.5.0,
 it's missing feature foo: -->
<requires version="0.5.0"/>

error

Reports error to output and exits. This command is useful for adding sanity checks to bakefiles (both user
bakefiles and format definitions).
<!-- This code prevents creation of rules
 for console mode apps: -->
<define-tag name="app-type" rules="exe">
 <if cond="value == 'console'">
 <error>
 Windows CE doesn't support console applications.
 </error>
 </if>
</define-tag>

warning

Reports warning to output and exits. This command is useful for adding sanity checks to bakefiles (both user
bakefiles and format definitions).
<if cond="FORMAT=='msvc'">
 <warning>msvc support is experimental</warning>
</if>

echo

Prints the text in tag's value to output and, unlike error, continues processing. This command is useful for
debugging bakefiles (e.g. by printing variable values or adding progress messages).

Note that if a variable is used in the text, it must evaluate to a constant (i.e. conditional variables or options
cannot be used).

26

bakefile.odt/ch03.html#concept.option
bakefile.odt/ch03.html#concept.condvar
bakefile.odt/ch05.html#cmd.error
bakefile.odt/ch03.html#concept.conditions.weak

Parameter Description Default value
level Can be verbose (in which case the

message is printed only when
bakefile(1) is run with --verbose
argument), debug (printed only
when using the --debug flag) or
normal (message is printed in any
case to stdout).

normal

Example:
<!-- Show the content of the variable X -->
<set var="X">$(someComplexFunction())</set>
<echo>The content of the X variable is: $(X)</echo>

Commands for Extending Bakefile

define-rule

Creates a new rule which can then be used as any other rule. A rule consists of the template (which is processed
before target-specific code for all targets created by this rule) and unlimited number of define-tag statements
that define tags specific to this rule (and derived rules).

The usage of <define-rule> is as follows:
<define-rule name="NAME">
 <template>
 <!-- here goes the template for this rule -->
 </template>

 <define-tag name="TAG1">
 ..
 </define-tag>
 <define-tag name="TAG2">
 ..
 </define-tag>
 ...
</define-rule>

Parameter Description Required/Default value
name The name of the rule to create. required
pseudo Allowed values are 0 and 1; the

value of means that the rule is a
pseudotarget.

0

extends A comma-separed list of the rules
which are extended by this rule. If
rule B extends rule A, it means that
all tags defined for A are also valid
for B and the template of rule B
automatically derives from the the
template of rule A.

Example:
<!-- Creates a new "copymo" rule with its own specialized
 tags; example usage of this rule:

 <copymo id="i18n">
 <lang>en</lang>
 <mo>myfile.mo</mo>

27

bakefile.odt/ch04.html#pseudotargets
bakefile.odt/ch05.html#cmd.define-tag
bakefile.odt/ch04.html#rules
bakefile.odt/rn01re01.html

 </copymo>
-->
<using module="datafiles"/>
<define-rule name="copymo" extends="copy-files">
 <template>
 <srcdir>$(SRCDIR)/locale</srcdir>
 <files>$(__mofiles)</files>
 <dependency-of>all</dependency-of>
 </template>
 <define-tag name="lang">
 <dstdir>$(DATADIR)/locale/$(value)/LC_MESSAGES</dstdir>
 </define-tag>
 <define-tag name="mo">
 <set var="__mofiles">$(value)</set>
 </define-tag>
</define-rule>

define-tag

Creates a new tag which can be used inside target definition or rules templates.

This command can be used in two ways: either it's used inside of define-rule, in which case it defines a new tag
for the current rule, or it's used in the global scope, in which case it must have the rules attribute that specifies
which rules the tag applies to.

Parameter Description Required/Default value
name Name of the tag to define. required
rules Comma-separed list of rules to

which the tag applies.
required in global scope, implicit
inside define-rule

Example:
<!--
Create a new tag which adds include and lib paths for a "standard"
library and can be used inside <exe> or <dll> tags; e.g.

 <exe id="test">
 <stdlib>lib1</stdlib>
 <stdlib>lib2</stdlib>
 </exe>
-->
<define-tag name="stdlib" rules="exe,dll">
 <include>$(value)/include</include>
 <lib-path>$(value)/lib</lib-path>
</define-tag>

define-global-tag

Like define-tag, but creates a tag that can only be used in the global scope (i.e. alongside targets definitions as
opposed to inside them).
Parameter Description Required/Default value
name Name of the tag to define. required
Example:
<!--
Create a global tag which defines 3 variables with the same given
prefix and with the same content; e.g.

 <dummyset prefix="test">abc</dummyset>
 <echo>$(test_first) $(test_second) $(test_third)</echo>

will display "abc abc abc"

28

bakefile.odt/ch05.html#cmd.define-tag
bakefile.odt/ch05.html#cmd.define-rule
bakefile.odt/ch05.html#cmd.define-rule

-->
<define-global-tag name="dummyset">
 <set var="$(attributes['prefix'])_first">$(value)</set>
 <set var="$(attributes['prefix'])_second">$(value)</set>
 <set var="$(attributes['prefix'])_third">$(value)</set>
</define-global-tag>

add-target

Creates a target programmatically.

Using this command is equivalent to defining a target by using the standard rules syntax, but it makes it possible
to add a target using dynamically determined rule. As such, it's only useful when implementing other, higher-
level rules. This tag is hardly useful for normal uses of bakefile and is used mostly as an internal utility.

This command can only be used inside rule definition, not in the global scope.

Parameter Description Required/Default value
target ID of the target to create. required
type The rule for the target. required
cond The condition under which the

target is built. In addition to regular
condition syntax, two special forms
are supported. If the condition is
target, the condition of the target
within which the add-target tag has
been used (if any). If the condition
has the form of target and
someOtherCondition, then target's
condition as described above will be
appended with and
someOtherCondition.

1

Example:
<!--
Creates a new EXE target 'myexe'; this is equivalent to
 <exe id="myexe">
 <sources>source1.c</sources>
 </exe>
-->
<add-target target="myexe" type="exe">
 <sources>source1.c</sources>
</add-target>

<!--
Now define a <do_special_cmd> tag which creates a target with
a name dynamically defined by the target from which the tag is used
-->
<define-tag name="do_special_cmd" rules="exe">
 <add-target target="do_special_for_$(id)" type="action" cond="target"/>
 <modify-target target="do_special_for_$(id)">
 <command>special_command $(id)</command>
 </modify-target>
</define-tag>

<exe id="myapp" cond="BUILD_MYAPP=='1'">
 ...

29

bakefile.odt/ch05.html#cmd.add-target

 <!-- the following tag will create a target 'do_special_for_myapp' which will
 be executed only when BUILD_MYAPP=='1' -->
 <do_special_cmd/>
</exe>

modify-target

Modifies an existing target by appending tags under this node to its definition.
Parameter Description Required/Default value
target ID of the target to modify. required
Example:
<!-- Modifies the global 'install' target to run an additional command -->
<modify-target target="install">
 <command>$(CP) myfile dest</command>
</modify-target>

output

Bakefile uses this command to specify what files a format produces. Output is generated only as the result of
output command's presence in ruleset.
Parameter Description Required/Default value
file The file where output goes.

Commontly used value is $
(OUTPUT_FILE).

required

writer Name of Empy template that is used
to generated the output.

required

method Method of combining generated
output with existing content of the
file. The default is replace, which
overwrites the file.
mergeBlocks divides both the old
and the new file's content into
blocks that begin with block
signature like this:
beging block BLOCKNAME

Blocks of the new content are
copied over to the file, replacing old
copies of the blocks, but blocks that
are not present in new content are
preserved. This can be used e.g. to
merge configuration settings from
several makefiles.
mergeBlocksWithFilelist works
similarly to mergeBlocks, but it
includes list of input files that
generated the block in the output
and ensures that blocks that have no
generator (e.g. because user's
bakefiles changed and no longer
cause some piece of code to be
generated) are removed from the

replace

30

Parameter Description Required/Default value
output. The list of files is added to
block name like this:
beging block

BLOCKNAME[file1.bkl,file2.bkl]
###

insertBetweenMarkers takes first
and last line of generated output,
finds them in the output file (which
must exist and must contain them)
and inserts generated content
between them.

31

Table of Contents

Format independent variables

Changing Bakefile behaviour

Directories

Installation Directories

Recognizing Platform

Format features

Miscellaneous

Standard makefile variables

Format specific variables

autoconf

dmars, dmars_smake

msvs2005prj, msvs2008prj

msvs2003prj

32

bakefile.odt/ch07.html#sec.msvs2003prj.vars
bakefile.odt/ch07.html#sec.msvs2005prj.vars
bakefile.odt/ch07.html#sec.dmars.vars
bakefile.odt/ch07.html#sec.autoconf.vars
bakefile.odt/ch07.html#sec.format.vars
bakefile.odt/ch07.html#sec.make.vars
bakefile.odt/ch07.html#sec.misc.vars
bakefile.odt/ch07.html#sec.format.features
bakefile.odt/ch07.html#platform
bakefile.odt/ch07.html#sec.install.dirs
bakefile.odt/ch07.html#sec.dirs
bakefile.odt/ch07.html#sec.change.bkl.behavior
bakefile.odt/ch07.html#sec.noformat.vars

Bakefile rulesets define lots of variables; this chapter provides brief summary of variables that are available for
makefile writers.

Format independent variables

Changing Bakefile behaviour

These variables are meant to be changed using -D command line argument (see manual page for details).
Variable name Description Default
OPTIONS_FILE If set, then user-configurable part of

generated makefile (i.e. options list)
is written into another file instead
that the makefile will include.
OPTIONS_FILE value must be
relative to OUTPUT_FILE.

(not set, empty)

WRITE_OPTIONS_FILE If OPTIONS_FILE is set and
WRITE_OPTIONS_FILE is 1, then file
OPTIONS_FILE is created. If 0, then
it is not, but it is still included by
the main makefile. This allows you
to generate options file shared by
lots of subproject makefiles and
don't repeatedly generate it.

1

Variables for fine-tuning Bakefile's output (rarely needed):
Variable name Description Default
VARS_DONT_ELIMINATE Bakefile normally eliminates all

unused variables from the output. In
some rare situations, it may not
detect that a variable is used, in
which case you can tell it to keep
the variable by adding its name to
this variable. So far this is only
useful if the variables is used in
makefile code included using
fragment.

(empty)

LIB_PAGESIZE Set this variable to a large power of
two if your linker (on Windows)
complains that page size is too
small when building static library.

4096

Directories

Variable name Description Default
SRCDIR Directory to which names of source

files are relative to. This value is
relative to OUTPUT_FILE (the
only exception is the autoconf
format, which prefixes the value
with $(srcdir) in order to allow

.

33

bakefile.odt/ch07.html#var.OUTPUT_FILE
bakefile.odt/ch05.html#cmd.fragment
bakefile.odt/ch03.html#concept.option
bakefile.odt/rn01re01.html

Variable name Description Default
out-of-tree compilation).
Note that the value of SRCDIR
cannot be set manually; if you want
to change it, you must use the set-
srcdir command as early in your
bakefile as possible. For example:
<makefile>
 <set-srcdir>../..</set-
srcdir>
 ..
</makefile>

The argument to set-srcdir must be
a constant expression.

BUILDDIR Directory where object files and
executables are built. This value is
relative to OUTPUT_FILE.

(depends on format)

Installation Directories

These are standard installation directories as used on Unix (most notably in Autoconf). They are used by install
target if the backend supports it. They are defined on all platforms. You can change their values freely (unless
you are using Autoconf backend).
Variable name Description Default
PREFIX Base directory for installed files. /usr/local on Unix
BINDIR Directory where programs are

installed.
$(PREFIX)/bin on Unix

LIBDIR Directory where libraries are
installed.

$(PREFIX)/lib on Unix

DLLDIR Directory where DLLs are installed. $(PREFIX)/lib on Unix, $
(PREFIX)/bin when targetting
win32

INCLUDEDIR Directory where C and C++ headers
are installed.

$(PREFIX)/include on Unix

DATADIR Directory where data files are
installed.

$(PREFIX)/share on Unix

Recognizing Platform

All of these are variables defined to either 0 or 1, with the exception of autoconf format backend where they
are options.
Variable name Description
PLATFORM_UNIX UNIX variant
PLATFORM_WIN32 32bit Windows
PLATFORM_MSDOS MS-DOS
PLATFORM_MAC Mac OS X or Mac Classic
PLATFORM_MACOSX Mac OS X
PLATFORM_OS2 OS/2
PLATFORM_BEOS BeOS
PLATFORM_SYMBIAN Symbian OS

34

bakefile.odt/ch07.html#var.OUTPUT_FILE

Format features

Variable name Description
FORMAT_HAS_VARIABLES This boolean flag indicates whether the output format

supports variables. If it does, then some space and time
optimization are possible and long Bakefile variables
that would otherwise be expanded into literals are left
as variables in generated makefile/project.

FORMAT_SUPPORTS_CONDITIONS Whether the output format can handle conditions (i.e.
variable values depending on conditions and
conditionally built targets) at all. Most make-tools do,
but e.g. MSVC project files can't do it. If set to 0, then
the targets and variables are "flattened", i.e. expanded
into multiple 'configurations' as in many IDEs.

FORMAT_SUPPORTS_CONFIGURATIONS Whether it is at least possible to have multiple
configurations if conditions are not supported (such as
in IDEs). Meaningless if
FORMAT_SUPPORTS_CONDITIONS=1. If both
FORMAT_SUPPORTS_CONDITIONS and
FORMAT_SUPPORTS_CONFIGURATIONS are 0,
then we're in deep trouble and we can only generate
makefiles that are not configurable.

FORMAT_SUPPORTS_ACTIONS Whether the output format can handle actions at all.
Most make-tools do, but IDE project files typically
don't.

FORMAT_SUPPORTS_SUBPROJECTS Whether the output format can handle subprojects at
all. Most make-tools do, but IDE project files typically
don't.

FORMAT_NEEDS_OPTION_VALUES_FOR_COND
ITIONS

Whether the output format needs to have options that
are used by conditions listed in the output file. This is
true in majority of cases because the conditions take
form such as "!if $(OPT) == value" and OPT must
be defined, but there's one exception: autoconf. It
decides on whether the condition is true or false in
autoconf_inc.m4 and Makefile.in does not need the
variables, so we can safely purge them and save some
space.

Miscellaneous

Variable name Description
BAKEFILE_VERSION String with Bakefile version number. The version is

formed from three numbers delimined by period. Read
only.

OPTIONS Space-separation list of options defined in the
makefiles. Note that the value of this variable changes
during processing as new options are defined!

INPUT_FILE Name of input file. The name is always absolute path.
Read only.

INPUT_FILE_ARG Same as INPUT_FILE, but the name is in exactly

35

bakefile.odt/ch07.html#var.INPUT_FILE
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch04.html#rule.subproject
bakefile.odt/ch04.html#rule.action

Variable name Description
same form as it was passed on command line, it's not
made absolute as in case of INPUT_FILE.

OUTPUT_FILE Name of the file where generated native makefile will
be written. Read only.

FORMAT Format of makefile currently being generated, e.g.
autoconf. Always constant expression.

COMPILER Short identifier of used compiler (e.g. "bcc" or "vc6").
This variable is only defined for Windows compilers
and is guaranteed to evaluate to constant expression.

TOOLSET What kind of tools the makefile uses. Use this to
determine what commands to put into command tags.
Can be one of win32, unix. Always a constanst
expression.

EOL_STYLE Default line endings style for current format, one of
unix, dos and mac.

LF Line feed character (\n in C).
TAB Tabelator character (\t in C).
DOLLAR Dollar sign ($).
SPACE Space character (" "). Note that SPACE is not evaluated

and so you can't use it in places where constant
expression is expected.

DIRSEP Character used to separate directory components in
paths on target platform (/ on Unix, \ on Windows).

Standard makefile variables

Makefile-based formats (gnu, msvc etc.) define standard options CC, CXX, CFLAGS, CXXFLAGS, CPPFLAGS,
LDFLAGS for specifying the compiler and its flags. Their default values are set to the default or typical compiler.
If necessary, the defaults for FOO can be overriden by setting the DEFAULT_FOO (e.g. DEFAULT_CXX for the C++
compiler) variable to a constant value anywhere in user bakefiles.

Format specific variables

autoconf

Variable name Description Default
AUTOCONF_MACROS_FILE Where configure.in macros for

setting options and conditional
variables (mostly AC_SUBST calls)
are written. This file must be
included by your configure.in
script. Set it to empty string to
disable creation of this file (e.g. for
subprojects of main project, see also
OPTIONS_FILE).
Note that the value of
AUTOCONF_MACROS_FILE shouldn't
be set manually; if you want to
change it, use the autoconf-needs-

autoconf_inc.m4

36

bakefile.odt/ch07.html#var.OPTIONS_FILE
bakefile.odt/ch04.html#tags.action.command

Variable name Description Default
macro command. For example:
<makefile>
 <autoconf-needs-
macro>AC_BAKEFILE_PYTHON</auto
conf-needs-macro>
 ..
</makefile>

The argument to autoconf-needs-
macro must be a constant
expression. It can be repeated more
than once.

dmars, dmars_smake

Variable name Description Default
DMARS_MEM_POOL_SIZE Specifies size of memory pool used

by the dmc compiler. The default
should be sufficient most of the
time and only needs increasing if
the compiler fails to compile source
code with out of memory errors.

99

msvs2005prj, msvs2008prj

Variable name Description Default
MSVS_PLATFORMS Comma-separated list of platforms

to generate project configurations
for. Can be set by the user using the
-D command line argument. See MS
VisualStudio 2005/2008 format
documentation for details.

win32

MSVS_PLATFORM This variable is not meant to be set
by the user. It's an option created by
the format itself. It's allowed values
are values from
MSVS_PLATFORMS variable set
by the user. It can be used by the
bakefiles to generate different
project settings for different
platform, in the same way user-
added options are used.

MSVS_PROJECT_FILE Unlike other variables in this
section, this variable can optionally
be set on targets to specify the
location of .vcproj file created for
them. The location is relative to
OUTPUT_FILE. See an example:
<exe id="hello_world">
 ...
 <!-- create subdirectory for
projects if needed and put it
there -->

(derived from OUTPUT_FILE)

37

bakefile.odt/ch07.html#var.OUTPUT_FILE
bakefile.odt/ch07.html#var.OUTPUT_FILE
bakefile.odt/ch07.html#var.MSVS_PLATFORMS
bakefile.odt/ch03.html#concept.option
bakefile.odt/ch09.html#format.msvs2005prj
bakefile.odt/ch09.html#format.msvs2005prj
bakefile.odt/ch09.html#format.msvs2005prj

Variable name Description Default
 <set
var="MSVS_PROJECT_FILE">exampl
es/HelloWorld.vcproj</set>
</exe>

msvs2003prj

The MSVS_PLATFORM option is present in this format as well, but it is always set to win32.
MSVS_PROJECT_FILE is fully supported.

38

bakefile.odt/ch07.html#var.MSVS_PROJECT_FILE
bakefile.odt/ch07.html#var.MSVS_PLATFORM

Table of Contents

Introduction

How to use a Python function in a bakefile

Python functions

envvar

isconst

isdefined

isoption

iscondvar

ifthenelse

ref

isDeadTarget

substituteFromDict

nativePaths

addPrefixIfNotEmpty

addPrefixToList

safeSplit

fileList

removeDuplicates

39

bakefile.odt/ch08.html#pyfunc.removeDuplicates
bakefile.odt/ch08.html#pyfunc.fileList
bakefile.odt/ch08.html#pyfunc.safeSplit
bakefile.odt/ch08.html#pyfunc.addPrefixToList
bakefile.odt/ch08.html#pyfunc.addPrefixIfNotEmpty
bakefile.odt/ch08.html#pyfunc.nativePaths
bakefile.odt/ch08.html#pyfunc.substituteFromDict
bakefile.odt/ch08.html#pyfunc.isDeadTarget
bakefile.odt/ch08.html#pyfunc.ref
bakefile.odt/ch08.html#pyfunc.ifthenelse
bakefile.odt/ch08.html#pyfunc.iscondvar
bakefile.odt/ch08.html#pyfunc.isoption
bakefile.odt/ch08.html#pyfunc.isdefined
bakefile.odt/ch08.html#pyfunc.isconst
bakefile.odt/ch08.html#pyfunc.envvar
bakefile.odt/ch08.html#sec.py.fn
bakefile.odt/ch08.html#sec.pyfn.howto
bakefile.odt/ch08.html#sec.intro

Introduction

In Bakefile, the expression inside $(...) doesn't have to be a variable name, it can be any Python expression.
Expressions that cannot be evaluated at runtime and are translated into output format conditions are more
limited, but as long as the expression is evaluated only at Bakefile execution time, it can be any valid Python
expression. In particular, any Python functions may be called.

In order to make common tasks easier, Bakefile provides miscellaneous utility functions which can be used in
your bakefiles. Unlike tags and rules provided through modules, the functions documented in this section are
available everywhere in Bakefile.

Except where explicitely stated differently, all functions accept as arguments Python strings.

How to use a Python function in a bakefile

Python instructions and thus also Python calls to functions, can be used in bakefile wrapping them into the $()
symbols. E.g. suppose you want to use the fileList function described below to set variable A; you should then
write:
<set var="A">
 $(fileList('mypath/*.c'))
</set>

Python functions

The following Python functions are defined:

envvar
envvar("name")

Returns reference to environment variable name. This function should be used instead of $(DOLLAR)(name)
idiom, because some output formats (namely, Watcom makefiles) use different syntax for referencing
environment variables.

isconst
isconst(expr)

Returns true if the expression (i.e. not variable name as in the case of isdefined etc.) given as argument is
constant expression.

isdefined
isdefined(name)

Returns true if the given string is the name of an option or a (conditional) variable previously defined in the
bakefile.

isoption
isoption(name)

Returns true if the given string is the name of an option previously defined in the bakefile.

iscondvar
iscondvar(name)

Returns true if the given string is the name of a conditional variable previously defined in the bakefile.

40

bakefile.odt/ch08.html#pyfunc.isdefined
bakefile.odt/ch08.html#pyfunc.fileList
bakefile.odt/ch10.html

ifthenelse
ifthenelse(cond, iftrue, iffalse)

Allows to write if-then-else constructs inside bakefiles. The arguments are respectively the if condition (use
Python syntax!), the Python expression to execute in case the condition results true and the Python expression to
execute in case the condition results false.

ref
ref(var, target=None)

Creates a reference to the given var variable which will be evaluated only in the final stage of bakefile
processing.

isDeadTarget
isDeadTarget(target)

Returns true if the given string is the name of a conditional target whose condition is never met.

substituteFromDict
substituteFromDict(var, dict, desc=None)

Returns the value of the dictionary entry whose key matches the value of the variable or option named var. E.g.
<set var="A">
 $(substituteFromDict(OPTION,{'1':'value1','0':'value0'}))
</set>

sets A to value1 if OPTION is 1 or to value2 if OPTION is 0. Note that Python requires curly brackets to define
a dictionary.

nativePaths
nativePaths(filenames)

Returns the given string with the / characters substituted by the content of the DIRSEP variable (see the
Variables section).

addPrefixIfNotEmpty
addPrefixIfNotEmpty(prefix, value)

Returns the value string prefixed with prefix, unless value is empty.

addPrefixToList
addPrefixToList(prefix, value)

Adds prefix to every item in value interpreted as whitespace-separated list. E.g.
<set var="A">
 $(addPrefixToList('file','1.txt 2.txt 3.txt'))
</set>

sets the A variable to file1.txt file2.txt file3.txt

safeSplit
safeSplit(str)

Splits the given string like the built-in split() Python function but, unlike the Python split() function,
recognizes that an expression like
"$(myPythonFuncCall(arg1, arg2)) item2"

41

bakefile.odt/ch07.html#var.DIRSEP

must be split as
["$(myPythonFuncCall(arg1, arg2))", "item2"]

and not as the built-in split() function would do
["$(myPythonFuncCall(arg1,", "arg2))", "item2"]

fileList
fileList(path)

Returns a string containing a space-separed list of all files found in the given path. path typically is a relative
path (absolute paths should be avoided in well-designed bakefiles) with a mask used to match only wanted files.

When the given path is relative, it must be relative to the SRCDIR global variable; remember that SRCDIR is in
turn relative to the location of the generated makefile (see OUTPUT_FILE).

Additionally this function can accept Python lists of strings, too. The returned value is the list of all files found
in all the paths of the list. E.g.
<sources>$(fileList('../src/*.cpp'))</sources>
<sources>$(fileList(['../src/*.cpp', '../src/*.c']))</sources>

removeDuplicates
removeDuplicates(list)

Returns a copy of the given (space-separed) list with all duplicate tokens removed.

42

bakefile.odt/ch07.html#var.OUTPUT_FILE
bakefile.odt/ch07.html#var.SRCDIR
bakefile.odt/ch07.html#var.SRCDIR

Table of Contents

MS VisualStudio 2005/2008 extended functionality

Watcom format extended functionality

Install and uninstall support on Windows

43

bakefile.odt/ch09.html#wininstall
bakefile.odt/ch09.html#format.watcom
bakefile.odt/ch09.html#format.msvs2005prj

Depending on the format there are some additional steps required to get extra functionality specific to this
format.

MS VisualStudio 2005/2008 extended functionality

The msvs2005prj and msvs2008prj formats are capable of generating project files both for Win32 PC platform
and for embedded platform. By default, only Win32 configurations are generated, embedded configurations
must be explicitly enabled.

This is done by setting the MSVS_PLATFORMS variable to comma-separated list of platforms to use. Accepted
platform identifiers are:

Platform identifier Visual Studio name
win32 Win32
win64 x64
pocketpc2003 Pocket PC 2003 (ARMV4)
The variable must be set before user bakefile file is processed, i.e. it has to be done using command-line -D
argument or in the Bakefiles.bkgen file.

For example, the following command causes Bakefile to generate projects for Pocket PC 2003:

$ bakefile -fmsvs2005prj -DMSVS_PLATFORMS=pocketpc2003 hello.bkl

And this generates hybrid project for both PocketPC and Win32 platforms:

$ bakefile -fmsvs2005prj -DMSVS_PLATFORMS=win32,pocketpc2003 hello.bkl

Watcom format extended functionality

Open Watcom compiler has possibility of crossplatform building for many platforms. MS Windows binaries are
the most common used output of this compiler but it has also possibility of building for DOS, OS/2 and other
operating systems. Because of that by default watcom makefiles are outputed with settings for building
windows binaries. This default setting can be changed by defining additional platform variable.
generate makefile.wat dedicated to windows development
bakefile -f watcom file.bkl

generate makefile.wat dedicated to DOS development in extended 32-bit mode
bakefile -f watcom -DPLATFORM_MSDOS=1 file.bkl

generate makefile.wat dedicated to OS/2 development
bakefile -f watcom -DPLATFORM_OS2=1 file.bkl

PLATFORM_MSDOS note

Only 32-bit DOS mode with dedicated extender is supported. Generated makefile contains additional DOS32
variable which points to desired extender. Expected values: X32VM, X32, PMODEW, CAUSEWAY, DOS32A and default
DOS4GW .

Install and uninstall support on Windows

By default the install-to and install-headers-to tags won't have any effect on Windows since the install and
uninstall MAKE targets are not very common there (unlike in the Unix world).

However you may find it useful to have (un)installation targets under Windows as well. In this case you can
enable this feature by defining the FORMAT_HAS_MAKE_INSTALL variable and setting it to 1:
enable install and uninstall support also under Windows:

44

bakefile.odt/rn01re01.html#bakefile.command.variable
bakefile.odt/ch04.html#tag.install-headers-to
bakefile.odt/ch04.html#tag.install-to
bakefile.odt/ch07.html#platform
bakefile.odt/rn01re01.html#bakefile.command.variable
bakefile.odt/ch07.html#var.MSVS_PLATFORMS

bakefile file.bkl -f msvc -DFORMAT_HAS_MAKE_INSTALL=1

When enabling the install/uninstall support for Windows, you should also set the desired PREFIX and
EXEC_PREFIX in your bakefile:
<set var="PREFIX">%MYPROJECTROOT%</set>
<set var="EXEC_PREFIX">%MYPROJECTROOT%</set>

45

Table of Contents

datafiles

data-files

data-files-ng

script-files

script-files-ng

data-files-tree

copy-files

copy-file-to-file

mkdir

pkgconfig

pkgconfig

46

bakefile.odt/ch10.html#rule.pkgconfig.pkgconfig
bakefile.odt/ch10.html#module.pkgconfig
bakefile.odt/ch10.html#rule.datafiles.mkdir
bakefile.odt/ch10.html#rule.datafiles.copy-file-to-file
bakefile.odt/ch10.html#rule.datafiles.copy-files
bakefile.odt/ch10.html#rule.datafiles.data-files-tree
bakefile.odt/ch10.html#rule.datafiles.script-files-ng
bakefile.odt/ch10.html#rule.datafiles.script-files
bakefile.odt/ch10.html#rule.datafiles.data-files-ng
bakefile.odt/ch10.html#rule.datafiles.data-files
bakefile.odt/ch10.html#module.datafiles

datafiles

This module provides rules for installing data files during make install phase. It also defines two rules for
copying files during build process (typically from source to build directory).

Implementation Note

This module currently works only with the autoconf format.

The following targets are defined in datafiles module:

data-files

Pseudo target that declares installable data files. Note that all files are installed into target directory, their
relative directories are not preserved.
Tag Description
srcdir Directory where source files are.
files List of files to copy. Names are relative to source

directory. May be used more than once.
install-to Directory where to install the files.

data-files-ng

Same as data-files, except that data-files-ng is real target and not pseudo target. This has two consequences: the
target must have id set and it can be conditional.

script-files

Same as data-files, but installed files have executable permissions on Unix.

script-files-ng

Same as data-files-ng, but installed files have executable permissions on Unix.

data-files-tree

Unlike data-files, this rule preserves directory structure of installed files. Available tags are same and have same
meaning as data-files tags.

copy-files

Copies file(s) from source directory to destination directory. Creates destionation directory if it doesn't exist.
Tag Description
srcdir Directory where source files are. This tag is not

required (unlike the other two) -- source directory is
empty by default.

files List of files to copy. Names are relative to source
directory.

dstdir Directory where to copy the files.

copy-file-to-file

Copies single file to another file.

47

bakefile.odt/ch10.html#rule.datafiles.data-files
bakefile.odt/ch10.html#rule.datafiles.data-files
bakefile.odt/ch10.html#rule.datafiles.data-files-ng
bakefile.odt/ch10.html#rule.datafiles.data-files
bakefile.odt/ch10.html#rule.datafiles.data-files
bakefile.odt/ch04.html#pseudotargets

Tag Description
src Source file.
dst Destination file.

mkdir

Creates directory.
Tag Description
dir Name of the directory.

pkgconfig

This module provides a simple rule for installing and uninstalling pkg-config template files.

Implementation Note

This module currently works only with the autoconf format because pkg-config files contain values such as
prefix that are set by configure.

The following targets are defined in pkgconfig module:

pkgconfig

Installs a .pc template file in the standard location of the pkgconfig files (i.e. LIBDIR/pkgconfig).
Tag Description
src Name of the pkgconfig file to install. Can contain a

relative path. E.g. build/myprj.pc

48

bakefile.odt/ch07.html#var.LIBDIR
http://pkgconfig.freedesktop.org/wiki/

Table of Contents

Introduction

bakefile_gen tags

Processing order

49

bakefile.odt/ch11.html#idm454261864736
bakefile.odt/ch11.html#idm454264677888
bakefile.odt/ch11.html#idm454270349600

Introduction

As soon as you start using Bakefile for your project and you need to generate many makefile formats from your
bakefiles (after all, this is the purpose of Bakefile!), you'll find very useful to automate the regeneration process.

Here is where bakefile_gen(1) comes into play. You can script all the bakefile calls you would have to do
manually in a single Bakefiles.bkgen file and then just call: bakefile_gen to run Bakefile for all the formats
you need to regenerate on all the bakefiles which are required by your project.

Bakefiles.bkgen files use a simple XML format to describe what outputs and how to generate. The root tag is
called bakefile-gen and inside it you can use any of the tags described below.

bakefile_gen tags

In addition to the following tags, bakefile_gen also supports the include tag.

Tag

Description

input

Adds the given list of whitespace-separed bakefiles to the list of bakefiles which must be regenerated.

You can use wildcards and relative paths to match all the bakefiles scattered in the directory tree of your project.
Example:
<!-- tell bakefile_gen to regenerate all the bakefiles of this project -->
<input>
 mybakefile1.bkl
 ../mybakefile2.bkl
 ../../../build/bakefiles/*.bkl
</input>

add-formats

Adds the comma-separed list of formats contained in this tag, to the list of formats to regenerate.

You can use the files attribute of this tag to selectively add the listed formats to a (set of) bakefile(s) only.
<!-- add the GNU format to all bakefiles under 'build/bakefiles' -->
<add-formats files="build/bakefiles/*.bkl">gnu</add-formats>

del-formats

Removes the comma-separed list of formats contained in this tag, from the list of formats to regenerate.

You can use the files attribute of this tag to selectively add the listed formats to a (set of) bakefile(s) only.
<!-- remove some rarely used formats from the bakefiles under the 'a' and 'b' subfolders
-->
<del-formats
files="a/*.bkl,b/*.bkl">cbuilderx,dmars,dmars_smake,msevc4prj,symbian,xcode2</disable-
formats>

enable-formats

50

bakefile.odt/ch05.html#cmd.include
bakefile.odt/rn01re02.html

Enables the regeneration of the comma-separed list of formats contained in this tag.

Note that by default all formats supported by Bakefile are enabled, thus this tag will actually have some effect
only if you used the disable-formats tag before.
<disable-formats>msvc,gnu</disable-formats>
...
<!-- we've changed idea; turn GNU format on -->
<enable-formats>gnu</enable-formats>

disable-formats

Disables the regeneration of the comma-separed list of formats contained in this tag.

Typically you'll want to use this tag to disable all those formats you are not interested to.
<!-- disable rarely used formats: -->
<disable-formats>cbuilderx,dmars,dmars_smake,msevc4prj,symbian,xcode2</disable-formats>

add-flags

Adds some flags to the command executed to regenerate the bakefiles.

You can use the files attribute of this tag to selectively add the flags to a (set of) bakefile(s) only.

You can use the formats attribute of this tag to selectively add the flags to a (set of) format(s) only.

Additionally, inside this tag, bakefile_gen recognizes various variables: $(INPUT_FILE) is the path of the
bakefile being processed; $(INPUT_FILE_BASENAME) is the filename of the bakefile being processed; $
(INPUT_FILE_BASENAME_NOEXT) is the filename of the bakefile being processed without the extension; $
(INPUT_FILE_DIR) is the directory of the bakefile being processed.
<!-- tell bakefile to output the generated Makefile.in for bake.bkl two levels up -->
<add-flags files="bake.bkl" formats="autoconf">
 -o../../Makefile.in
</add-flags>

<!-- always generate the windows makefiles in ../msw respect the bakefile's being
processed: -->
<add-flags formats="borland">-o$(INPUT_FILE_DIR)/../msw/makefile.bcc</add-flags>
<add-flags formats="mingw">-o$(INPUT_FILE_DIR)/../msw/makefile.gcc</add-flags>
<add-flags formats="msvc">-o$(INPUT_FILE_DIR)/../msw/makefile.vc</add-flags>
<add-flags formats="watcom">-o$(INPUT_FILE_DIR)/../msw/makefile.wat</add-flags>

del-flags

Removes some flags to the command executed to regenerate the bakefiles.

You can use the files attribute of this tag to selectively remove the flags to a (set of) bakefile(s) only.

You can use the formats attribute of this tag to selectively remove the flags to a (set of) format(s) only.
<add-flags>-DVARIABLE1=value</add-flags>

<!-- delete the -DVARIABLE1=value option from the MSVC and BORLAND formats -->
<del-flags formats="msvc,borland">
 -DVARIABLE1=value
</del-flags>

51

bakefile.odt/ch11.html#tag.disable-formats

Processing order

Bakefiles.bkgen file is processed in the following order:

1. disable-formats entries are read into blacklist of formats to globally ignore

2. enable-formats entries are read and the formats listed are removed from the blacklist (so that your
Bakefiles.local.bkgen file can re-enable something disabled by default).

3. add-formats and del-formats are processed in the order they appear in the file. They specify which
formats should be generated for which files (the default being all files), assuming the blacklist is empty
(in other words, they describe what this Bakefiles.bkgen is capable of generating).

4. The list from step 3. is filtered using the blacklist from steps 1. and 2.

52

Table of Contents

bakefile — native makefiles generator

bakefile_gen — batch bakefile generation

bakefilize — prepare Bakefile project for use with Autoconf

53

bakefile.odt/rn01re03.html
bakefile.odt/rn01re02.html
bakefile.odt/rn01re01.html

Name

bakefile — native makefiles generator

Synopsis

bakefile [--version] [--help] -fFORMAT -oOUTFILE [--eol=[format|dos|unix|mac|native]] [--
wrap-output=[no|LENGTH]] [-DVAR=VALUE ...] [-IPATH ...] [-v] [-q] [--dry-run] [--touch] [--dump]
file.bkl

Description

bakefile creates various types of Makefiles and project files from a single project description called a
"Bakefile".

Command Line Options

--version

Display Bakefile version and exit.

-h, --help

Display usage information and exit.

-fFORMAT, --format=FORMAT

Specify output format. Bakefile supports the following formats:
Format File(s) Generated
autoconf Makefile.in for GNU Autoconf
borland Makefile for Borland C++ and Borland make
dmars Generic Makefile for Digital Mars C/C++
dmars_smake Makefile for Digital Mars C/C++ with SMAKE
gnu Makefile for GNU toolchain: GNU Make, GCC, etc.
mingw Makefile for MinGW toolchain: mingw32-make,

MinGW port of GCC, etc.
msvc Makefile for Visual C++ with Microsoft nmake
msvc6prj Microsoft Visual C++ 6.0 project files
msevc4prj Microsoft Embedded Visual C++ 4 project files
msvs2003prj MS Visual Studio 2003 project files
msvs2005prj MS Visual Studio 2005 project files
msvs2008prj MS Visual Studio 2008 project files
suncc GNU makefile for SunCC compiler
symbian Symbian development files
watcom Makefile for OpenWatcom C/C++
xcode2 Apple Xcode 2.4 project files

-oOUTFILE, --output=OUTFILE

File to write generated makefile to. For those backends that generate more than one file, this option
specifies the name of the main makefile.
This option has special meaning for msvs200xprj formats: by default, both the project files (one for each

54

target) and a solution file, containing all the project files, are generated. However if OUTFILE is a file
with .vcproj extension, then only the (necessarily unique) project file will be generated.

-DVAR=VALUE

Define Bakefile variable. This definition overrides any definition from the ruleset or input makefile. You
can use it to customize generated output.

--eol=[format|dos|unix|mac|native]

Change the type of line endings used by general files. dos, unix and mac specify the line endings used
by respective platforms. native will use line endings of the platform Bakefile is ran on (doing this is
usually a bad idea, but it is useful e.g. when checking generated files into RCS system that can't deal
with line endings correctly, such as CVS). The default value is format and means that the most
appropriate line endings for the output format will be used - Windows makefiles will use DOS line
endings, Autoconf makefiles will use Unix ones and so on.

--wrap-output=[no|LENGTH]

Change line wrappings behavior. By default, Bakefile wraps generated makefiles so that lines don't
exceed 75 characters. Use this option to either change the limit or to disable wrapping entirely by using
no as the value.

-IPATH

Add path to the list of directories where Bakefile looks for rules and output templates.

--dry-run

Process the bakefile normally, but instead of creating or modifying files, just print which files would be
changed without actually modifying them.

-v, --verbose

Be verbose.

-q, --quiet

Supress all output except for errors.

--touch

Always touch output files, even if their content doesn't change.

--debug

show internal debugging information

--dump

Dump all Bakefile variables and targets to standard output instead of generating output. This is only
useful for debugging Bakefile or ill-behaving makefiles.

--output-deps=FILE

Output dependency information needed by bakefile_gen utility

--output-changes=FILE

Store list of changed files to the given file

--xml-cache=FILE

specify cache file where bakefile_gen stores pre-parsed XML files

55

Environment Variables

BAKEFILE_PATHS

List of directories where ruleset files are looked for (syntax is same as in PATH). Bakefile's data directory
is always searched in addition to paths listed in BAKEFILE_PATHS, but BAKEFILE_PATHS has higher
priority.

56

Name

bakefile_gen — batch bakefile generation

Synopsis

bakefile_gen [-dDESCFILE ...] [-FFORMATS ...] [-DVAR=VALUE ...] [-IPATH ...] [-c] [--list-files] [-j]
[-p] [--dry-run] [-k] [-n] [-v] [-V]

Description

Calls bakefile with flags listed in description file (Bakefiles.bkgen or file specified using the --desc option).

Command Line Options

--desc=DESCFILE

Uses given description file instead of Bakefiles.bkgen.

--formats=FORMATS

Calls Bakefile to generate only makefiles for specified formats. FORMATS is comma-separed list of
format names. Formats not included in the list are ignored even if they are listed in <add-formats> tags
in the description file.

--bakefiles=BAKEFILES

Calls Bakefile to generate makefiles only from bakefiles that match any wildcard in comma-separed list
of wildcards in BAKEFILES. Input files specified using the <input> tag in the description file that don't
match any of the wildcards are not processed.

-DVAR=VALUE

Pass variable definition to Bakefile, overriding any definition in description file or the input bakefile.

-IPATH

Add path to the list of directories where Bakefile looks for rules and output templates.

-c, --clean

Removes all output files instead of generating them.

--list-files

Prints the list of output files that would be generated instead of creating them. This command respects
the constraints specified using the --format and --bakefile options. It can be used for example to
create the list of all makefiles for given format.

-j, --jobs

Number of jobs to run simultaneously. Default is the number of CPUs.

-p, --pretend

Don't do anything, only display actions that would be performed.

--dry-run

Process the bakefile normally, but instead of creating or modifying files, just print which files would be

57

changed without actually modifying them.

-k, --keep-going

Do not stop when a target fails.

-B, --always-make

Pretend that all makefiles are out of date and regenerate all of them. -f and -b options are respected.

-v, --verbose

Display detailed information.

-V, --very-verbose

Display even more detailed information.

--help

Display usage information for bakefile_gen

58

Name

bakefilize — prepare Bakefile project for use with Autoconf

Synopsis

bakefilize [--copy] [--dry-run] [--force] [--verbose] [--help]

Description

For the "autoconf" format, Bakefile creates Makefile.in files that depend on the availability of common pieces
of a GNU build system. (config.guess, install-sh, etc.) These tools are part of Automake, which can copy
these files into a project's directory during processing. bakefilize effectively replaces the automake --add-
missing feature.

It is standard practice in Autoconf-based projects to provide a "bootstrap" script (commonly called either
bootstrap or autogen.sh) to run commands like autoconf with the proper flags and in the proper order. You
should run bakefilize in that script, at some point before the configure script runs.

Command Line Options

-c, --copy

Copy the files from the Automake directory, rather than the default behavior of making symbolic links.

-n, --dry-run

Only show the commands that would be executed.

-f, --force

Replace all existing files, instead of only adding missing files.

-v, --verbose

Show debugging messages.

--help

Display usage information for bakefilize

59

	Bakefile version 0.2.11
	Custom manual made by Michael Gautier 9/23/2019
	Made with pandoc.
	Converted from html to odt then exported to pdf from LibreOffice.
	Hello, world
	Targets
	Variables
	Templates
	Options
	Conditions
	Conditional Variables
	Modules
	Presets
	Paths
	Pseudo targets

	Standard Target Types ("Rules")
	exe
	lib
	dll
	module
	phony
	action
	subproject

	Common tags
	Autoconf Note

	Makefile Commands
	set
	unset
	option
	template
	using
	include
	if
	fragment
	requires
	error
	warning
	echo

	Commands for Extending Bakefile
	define-rule
	define-tag
	define-global-tag
	add-target
	modify-target
	output

	Format independent variables
	Changing Bakefile behaviour
	Directories
	Installation Directories

	Recognizing Platform
	Format features
	Miscellaneous

	Standard makefile variables
	Format specific variables
	autoconf
	dmars, dmars_smake
	msvs2005prj, msvs2008prj
	msvs2003prj

	Introduction
	How to use a Python function in a bakefile
	Python functions
	envvar
	isconst
	isdefined
	isoption
	iscondvar
	ifthenelse
	ref
	isDeadTarget
	substituteFromDict
	nativePaths
	addPrefixIfNotEmpty
	addPrefixToList
	safeSplit
	fileList
	removeDuplicates

	MS VisualStudio 2005/2008 extended functionality
	Watcom format extended functionality
	PLATFORM_MSDOS note

	Install and uninstall support on Windows
	datafiles
	Implementation Note
	data-files
	data-files-ng
	script-files
	script-files-ng
	data-files-tree
	copy-files
	copy-file-to-file
	mkdir

	pkgconfig
	Implementation Note
	pkgconfig

	Introduction
	bakefile_gen tags
	Processing order
	Name
	Synopsis
	Description
	Command Line Options
	Environment Variables
	Name
	Synopsis
	Description
	Command Line Options
	Name
	Synopsis
	Description
	Command Line Options

